Rb-Si (Rubidium-Silicon) System

James Sangster

Equilibrium Diagram

Information on this system was reviewed by [2001Bor]. The only phase diagram available for this system is a small diagram (no experimental points, unlabelled axes) without further information [1978Chu]. The stated source of this phase diagram is A.N. Kuznetsov, Thesis, Sverdlovsk (1978). Little or no quantitative data is evident in this phase diagram. Nevertheless, [2001Bor] extracted the following qualitative data: there is a liquid miscibility gap in the interval $0.50 > x_{Si} > 0.04$, the montectic temperature is 611 °C and the critical temperature is 800 °C; there is a 1:1 compound that melts at 611 °C (apparently indistinguishable from the montectic temperature); there is a stoichiometric compound of approximately 84 at.% Si of indeterminate melting point. The solubility of Si in liquid Rb at the Rb melting point is apparently negligible (the solubility of Si in liquid Rb, according to [2000Bor], is 4 at.% at 600 °C).

RbSi was prepared by heating the elements in a corundum crucible in a sealed steel bomb to 650 °C [1948Hoh, 1961Bus, 1961Sch]. It was characterized by x-ray diffraction (XRD) on powder [1948Hoh] and single-crystal samples [1961Bus, 1961Sch]. According to [1948Hoh, 1961Sch], RbSi decomposes upon heating in vacuo at 350-360 °C [1948Hoh] or ~500 °C [1961Sch], forming RbSi₆ [1961Sch] or RbSi₈ [1948Hoh]. These were identified as new species by their powder diffractograms [1948Hoh, 1961Hoh].

RbSi may be partially decomposed by careful heating under argon. In this way, [1998Sch] identified Rb_6Si_{25} , Rb_8Si_{46} and Rb_xSi_{136} (x = 5 to 12) as transient species. [1970Cro] partially decomposed RbSi to obtain Rb_5Si_{46} , which was characterized by XRD. This begins to decompose in vacuo at ~530 °C [1970Cro]. The compound of 84 at.% Si, posited by [1978Chu], may have been $RbSi_6$ or one of the transient compounds found by [1998Sch].

 $Rb_{12}Si_{17}$ was prepared by synthesis from the elements at 900 °C in sealed Nb containers and jacketed in evacuated ampules of fused silica [1998Que]. Its structure was elucidated from single-crystal XRD data [1998Que].

Crystal Structures and Lattice Parameters

The crystal structures and lattice parameters are presented in Tables 1 and 2, respectively.

RbSi is isotypic with KSi and hence contains isolated Si₄ tetrahedra surrounded by Rb atoms. Each Rb atom has four Si₄ groups associated with it, arranged tetrahedrally [1961Bus]. The Si₄ tetrahedra are entirely analogous to similar 4-atom tetrahedra Sn₄, Ge₄, and Pb₄, found also in compounds with alkali metals [1985Sch]. For this reason, RbSi is sometimes written as Rb₄Si₄ [1998Que].

The compound identified as $RbSi_6$ had a cubic structure, shown by powder XRD [1961Sch].

 Rb_5Si_{46} belongs to a series of cage or clathrate structures, strictly analogous to the well-known gas or liquid hydrates, such as $8Cl_2 \cdot 46H_2O$ [1970Cro], where the water molecules form a number of cavities for up to 8 guest molecules. In Rb_5Si_{46} , the available sites are partially occupied, and the structure is the same as the corresponding Na and K compounds M_xSi_{46} [1970Cro].

Phase	Composition, at.% Si	Pearson symbol	Space group	Strukturbericht designation	Prototype	Reference
Rb	0	cI2	Im3 ¯ m	A2	W	[King1]
RbSi	50.0	<i>cP</i> 64	P43n		GeK	[1961Bus, 1961Sch]
Rb ₁₂ Si ₁₇	58.6		$P2_1/c$			[1998Que]
Rb ₅ Si ₄₆	90.1	cP51	PmĪn		Si	[1970Cro]
Si	100	cF8	$Fd\bar{3}m$	<i>A</i> 4	C (diamond)	[King1]

Table 1 Rb-Si crystal structure data

 Table 2
 Rb-Si lattice parameter data

		Lat	ttice parameters, r			
Phase	Composition, at.% Si	a	b	c	β	Reference
Rb	0	0.5703				[King1]
RbSi	50.0	1.304				[1961Bus, 1961Sch]
Rb ₁₂ Si ₁₇	58.6	2.4445	1.4017	4.6038	91.32°	[1998Que]
Rb ₅ Si ₄₆	90.1	1.027				[1970Cro]
Si	100	0.54306				[King1]

 $Rb_{12}Si_{17}$ is overall monoclinic with a very large unit cell (Z = 16). It was found that the structure of this compound is characterized by both Si_4 tetrahedra and Si_9 clusters; in other words, $Rb_{12}Si_{17}$ can be written as ($Rb_4Si_9 + 2Rb_4Si_4$) [1998Sch, 1998Que]. Experimental Raman spectra due to these clusters were verified by quantum mechanical calculations by these authors.

References

- **1948Hoh:** E. Hohman, Silicides and Germanides of the Alkali Metals, *Z. Anorg. Allg. Chem.*, 1948, **257**(1-3), p 113-126, in German (Equi Diagram; Crys Structure; Experimental)
- **1961Bus:** E. Busman, The Crystal Structures of KSi, RbSi, CsSi, Kge, RbGe and CsGe, Z. Anorg. Allg. Chem., 1961, **313**(1-2), p 90-106, in German (Equi Diagram; Crys Structure; Experimental)
- 1961Sch: R. Schäfer and W. Klemm, Further Notes on the Silicides and Germanides of the Alkali Metals, Z. Anorg. Allg. Chem., 1961, 312(3-4), p 214-220, in German (Equi Diagram; Crys Structure; Experimental)
- **1970Cro:** C. Cros, M. Pouchard, and P. Hagenmuller, A New Family of Inorganic Clathrates Isostructural with Gas and Liquid Hydrates. Interpretation of Results, *J. Solid-State Chem.*,

1970, **2**(4), 1970, p 570-581, in French (Equi Diagram; Crys Structure; Experimental)

- 1978Chu: K.A. Chuntonov and S.P. Yatsenko, Immiscibility in Binary Melts of Rubidium with p-Elements, *Zh. Fiz. Khim.*, 1978, 52(9), p 2145-2154, in Russian; TR, *Russ. J. Phys. Chem.*, 1978, 52(9), p 1241-1246 (Equi Diagram; Review; #)
- **1985Sch:** H. Schäfer, On the Problem of Polar Intermetallic Compounds, *Ann. Rev. Mater. Sci.*, 1985, **15**, p 1-41 (Crys Structure; Review).
- **1998Que:** V. Quéneau, E. Todorov, and S.C. Sevov, Synthesis and Structure of Isolated Silicon Clusters of Nine Atoms, *J. Am. Chem. Soc.*, 1998, **120**(13), p 3263-3264 (Equi Diagram; Crys Structure; Experimenta; Calculation)
- 1998Sch: H.G. von Schnering, M. Somer, M. Kaupp, W. Carrillo-Cabrera, M. Baitinger, A. Schmeding, and Yu. Grin, The Cluster Anion Si₉⁴⁻, Angew. Chem., 1998, 110(17), p 2507-2509, in German; TR, Angew. Chem. Int. Ed. Engl., 37(17), p 2359-2361 (Equi Diagram; Crys Structure; Experimental; Calculation)
- 2000Bor: H.U. Borgstedt and C. Guminski, Solubilities and Solution Chemistry in Liquid Alkali Metals, *Monatsh. Chem.*, 2000, 131(9), p 917-930 (Equi Diagram; Review)
- 2001Bor: H.U. Borgstedt and C. Guminski, IUPAC-NIST Solubility Data Series. 75. Nonmetals in Liquid Alkali Metals, J. Phys. Chem. Ref. Data, 2001, 30(4), p 835-1158 (Equi Diagram; Review; #)

Rb-Si evaluation contributed by **J. Sangster**, Sangster Research Laboratories, P.O. Box 49562, 5122 Cotes des Neiges, Montreal, Quebec, Canada, H3T 2A5. Literature searched through 2004.